
Carnegie Mellon
Software Engineering Institute

PAMD: Developing a Plug-In
Architecture for Palm OS-
Powered Devices Using
Software Engineering

Hernan Eguiluz
Venkat Govi
You Jung Kim
Adrian Sia

August 2002

Product Line Practice Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2002-TN-020

20020919 013

Carneqie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry belief age veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carneqie Mellon Human Relations Commission, the Department of Defense policy of "Don't ask, don't tell, don't pursue" excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are

available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone

(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

PAMD: Developing a Plug-In
Architecture for Palm OS-
Powered Devices Using
Software Engineering

Hernan Eguiluz
Venkat Govi
You Jung Kim
Adrian Sia

August 2002

Product Line Practice Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2002-TN-020

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2002 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Contents

Abstract vii

1 Introduction 1
1.1 About This Document 1

2 Current State of Plug-Ins in Industry 2
2.1 General Concept of Plug-Ins 2

2.2 Plug-Ins for Mobile Devices 2

2.2.1 HackMaster Framework 3
2.2.2 MagicText—a HackMaster Framework Extension 4
2.2.3 DiddleBug Framework 4

3 Plug-In Architecture for Mobile Devices (PAMD) 5
3.1 Scenario 5

3.2 PAMD Requirements 5

3.3 PAMD Architecture 6
3.3.1 PAMD Architecture Qualities 6
3.3.2 PAMD Components 7
3.3.3 PAMD System Architecture 8
3.3.4 Tradeoffs 10

4 PAMD Implementation 13
4.1 Plug-In Manager Implementation 13

4.1.1 Communication Between the Plug-In Manager and an
Application 13

4.1.2 Communication Between a Plug-In Manager and a Plug-In 13
4.1.3 Recovery Mechanism from Malicious Corruption to the

Plug-In Registry 14
4.2 PAMD Plug-In Implementation 14

4.3 PAMD Application Implementation 15

4.4 Design Limitations 15
4.4.1 Single Input and Output Parameters 15
4.4.2 Validity of a Plug-In 16
4.4.3 Circular References 16
4.4.4 Platform Limitations 16

CMU/SEI-2002-TN-020

4.4.5 Single Service 16

5 A Programmer's Perspective of PAMD 17
5.1 PAMD Data Types 17

5.2 Abstract Data Types 18

5.3 Writing a PAMD Plug-In 18

5.4 Writing a PAMD-Aware Application 20

6 Use of Software Engineering Tools 22
6.1 Architecture Tradeoffs Analysis Method 22

6.2 Software Risk Evaluation 23

6.3 Software Process 24

7 Future Directions 26

8 Conclusions and Lessons Learned 27

Appendix A Plug-In Framework Code Structure 29

Appendix B Sample Plug-In Body 30

Appendix C Sample Application Code 32

Appendix D Acronyms and Terms 34

References 35

CMU/SEI-2002-TN-020

List of Figures

Figure 1: General Architectural View 9
Figure 2: Component Interaction Diagram 9

CMU/SEI-2002-TN-020

jv CMU/SEI-2002-TN-020

List of Tables

Table 1
Table 2
Table 3.

Architectural Qualities 7
Plug-In Launch Codes 13
Plug-In Run Modes 15

CMU/SEI-2002-TN-020

CMU/SEI-2002-TN-020

Abstract

This technical note describes a plug-in architecture for Palm Operating System devices
developed by the authors, a team of graduate students from Carnegie Mellon's Master of
Software Engineering program. The note highlights the architecture's three most important
aspects: the product (a plug-in architecture) created from a software architecture point of
view; the implementation details that made this a unique project; and the software
engineering facets of the project. This note also shares lessons learned and suggests possible
avenues that could be pursued in the future to make the plug-in architecture for mobile

devices (PAMD) more universal.

CMU/SEI-2002-TN-020 vn

vjij CMU/SEI-2002-TN-020

1 Introduction

As Portable Digital Assistants (PDAs) have limited memory and processing power, they can
only run small applications with limited functionality. A common solution to this problem is
to create pieces of functionality that can be shared by many applications—commonly called
plug-ins. Currently, plug-ins implemented for the Palm Operating System (OS) are
application dependent. As each application that implements a plug-in architecture does it in
its own proprietary way, plug-ins are not interchangeable between applications. Another
characteristic of Palm OS applications is that they function independently; very few of them
share data. Those that do tend to be highly coupled.

To investigate developing a plug-in architecture, we participated in a project conducted by
the Software Engineering Institute (SEI). At the beginning of this project, there was no
simple way for two unrelated applications to exchange related data in a Palm OS device
because most Palm OS applications are not aware of other applications and their capabilities.

Hence, there was a need to develop a nonproprietary application-level plug-in architecture for
mobile devices (PAMD) for the Palm OS. This architecture had to allow applications to
transparently extend their functionality beyond what was conceived by their designers.
PAMD intends to bridge the communications gap between applications and plug-ins by
providing a communications gateway. Using PAMD, applications and plug-ins can
communicate with each other by passing data and control.

1.1 About This Document
This technical note targets a technically savvy audience. At the very least, the reader is
expected to have a basic understanding of the PALM OS and software architecture.

This document describes this plug-in architecture development project from the initial
concept of a plug-in to the architectural details of the proposed solution and how software
developers interact with it. Our experience using software engineering tools is also
documented. Finally, this document ends with a series of appendices containing sample code
that a software developer can use when programming with PAMD.

CMU/SEI-2002-TN-020

2 Current State of Plug-Ins in Industry

To understand the derivation of software requirements and the resulting architecture
associated with plug-ins, you should understand the workings of plug-ins and the limitations

of some existing plug-in designs.

2.1 General Concept of Plug-Ins
A plug-in is a separate module of code that behaves like an extension to the application that
invokes it. Plug-ins allow the features of an existing application to be extended beyond its
original design. For example, plug-ins are frequently used in Web browsers to increase the
flexibility of the browser by handling one or more data types (through Multipurpose Internet
Mail Extensions [MDvffis]), thereby extending the capabilities to a wide range of interactive
and multimedia capabilities. The details of the plug-in mechanisms may be different from
each other due to the various platforms and semantics; nevertheless, the concept can be
translated from desktop to mobile devices. A browser, such as Netscape Communicator,
stores a list of plug-ins in a plug-in directory that acts like a registry. When the browser
encounters data of a particular MME data type, it searches its registry for a matching plug-in
that can handle that data type. Once located, the plug-in is loaded into memory and
initialized, and an instance of it is created. The life cycle of the plug-in is controlled by the
browser that invokes it. When the browser window is closed, the plug-in instance is deleted,

and the code is unloaded from memory.

One important point to note is that the plug-in is platform (browser) dependent, that is, a
Netscape Communicator plug-in will not work on Internet Explorer because the mechanism
(handshaking protocol) between the interacting modules is different. Hence, it is the
responsibility of the user to download the appropriate plug-in. A plug-in that is compatible
with the platform would be launched when its service is requested, whereas an incompatible

plug-in would not.

2.2 Plug-Ins for Mobile Devices
Porting the plug-in conceptual model for resource-limited mobile devices seems to be an
ideal way of extending the capabilities of applications. Although the plug-in concept has been
applied to Palm OS devices by third-party application developers, there is no standardized
framework for plug-in development. The framework refers to a specification where plug-ins
can be reused by different applications even though both applications and plug-ins are

developed independently.

CMU/SEI-2002-TN-020

The current approach for writing plug-ins is to develop the program as a code resource. This
method has been used to develop large applications with over 64KB of code. However, Palm
OS devices don't provide a standard service and data description to allow applications to

discover plug-ins and make use of their services—thereby enabling a plug-in's reusability.
Hence, the plug-ins created do not have the ability to be reused by different applications at

the binary level.

However, using a similar plug-in concept and code resource mechanism, others have come up
with their own frameworks (both proprietary and open standard) to support the extension of
their applications with plug-ins. However, the research conducted for this project shows that
in most of these frameworks, the plug-ins are tightly coupled to either the applications or the
OS platform, greatly limiting their reusability. The following frameworks, described further
below, were researched using information from public sources:

• HackMaster [DaggerWare]

• MagicText (a HackMaster framework extension) [Synergy Solutions Inc.]

• DiddleBug [SourceForge.net]

2.2.1 HackMaster Framework

HackMaster is a framework that manages hack extensions to the Palm OS system software.
Hacks are similar in concept to a plug-in except that they use an OS mechanism. Specifically,
hacks make use of the system trap vectors, a table pointing to system routines maintained by
the OS, to alter a system routine with another non-system routine to provide the desired
function when invoked. To change the behavior of the original system, hacks hook
themselves into one of the many system-routine traps. In this approach, HackMaster provides
a framework for managing hacks that is similar to that for plug-in models, so that hacks
behave in a standard way and do not conflict with each other. To write hacks, programmers
need to identify the appropriate system trap, so that it can be rerouted to itself. HackMaster
takes care of patching and unpatching the traps.

HackMaster limits the portability and reliability of plug-ins because its platform needs to be
tightly integrated with the Palm OS. The patching and unpatching of vectors is necessary to
provide new functions and restore system functions. Moreover, traps are not guaranteed to
remain static,1 so there is no way to ensure that all versions of the Palm OS will support
HackMaster. In addition, hacks can potentially cause conflicts among themselves that can
lead to system instability. Also, the number of plug-ins that can be supported is limited by the
number of available system traps. It is unclear whether multiple hacks can be chained
together to achieve a particular goal.

This is because traps are undocumented features of the Palm OS.

CMU/SEI-2002-TN-020

2.2.2 MagicText—a HackMaster Framework Extension
MagicText is a plug-in that can be extended by other plug-ins. It uses the HackMaster
framework to provide text enhancement and management functions for applications. Its main
limitation is that it is suitable only for text-entry enhancements—it is not a general-purpose
plug-in architecture. Thus, it would not be easy to adapt the framework to accept various

kinds of data types.

2.2.3 DiddleBug Framework
DiddleBug is a freeware graphical application for the Palm OS that provides a sketching
capability. It comes with IntelliBooger™, an embedded extension or plug-in framework that
allows the creation of entries in applications such as ToDo, DateBook, and other built-in

Palm OS applications from within DiddleBug.

DiddleBug is an example of a tightly coupled plug-in model in which plug-ins are tightly
integrated with Palm applications. DiddleBug uses IntelliBooger plug-ins as a bridge between
itself and built-in Palm applications to allow graphical data to be sent to those applications.
This is essentially a closed framework targeting only the built-in applications, although it
may be possible to target other applications. This closed framework has limited the usability

of plug-ins.

TM IntelliBooger is a trademark of Handspring.

CMU/SEI-2002-TN-020

3 Plug-In Architecture for Mobile Devices (PAMD)

PAMD is an architecture framework2 for the exchange of data and control between
applications. It details the architecture, syntax, and semantic behavior of applications to

support application-level data exchange.

3.1 Scenario
Currently, there is no easy and standard way for applications to communicate inside a PDA
running the Palm OS. The following end-to-end scenario explains how PAMD can help
achieve this and assumes that PAMD-aware applications and the plug-ins used are already

installed in the user's PDA.

1. A user launches the PAMD-aware Notepad application.

2. The user enters text in the Notepad application.

3. The user decides to email the text that he just entered in the Notepad application. Since
that application has no email-sending capabilities, he decides to see if there are any
plug-ins that can be used to send email.

4. The user selects the Plug-Ins menu item to locate the available plug-in services installed
in the Palm device.

5. PAMD provides all the plug-ins available for the Notepad application to use. In this
case, plug-ins such as email, uuencode, and print are displayed.

6. The user selects the email plug-in.

7. The text is sent from the Notepad application to the mail database.

8. The user switches to the Mail application, and in the Outbox, he finds an email
containing the emailed text.

3.2 PAMD Requirements
The scenario described above was the original vision for the project and led the project team

to identify the following requirements of PAMD:

• It must use nonproprietary plug-ins. Current Palm OS plug-in technology is application
or content specific. Any application that complies with the PAMD framework will access

Framework is a rather overloaded word in software. For our purposes, it is a supporting structure
around which something can be built. In the context of this technical note, it refers specifically to
the communication between applications and plug-ins.

CMU/SEI-2002-TN-020

•

PAMD plug-ins to extend its capabilities. From the other point of view, any plug-in that
complies with PAMD shall be used by any PAMD-aware application.3

It uses bi-directional communication between applications and plug-ins: Currently, plug-
ins and applications, although loosely coupled, resemble a "pipe and filter" architectural
style. Therefore, communication between them is one-way (with the exception of the
operation's success or failure indicator). PAMD-aware applications shall be able to pass
and receive complex information to and from plug-ins.

Communication is allowed between plug-ins. Typically, communication is allowed only
between applications and plug-ins; it is restricted between plug-ins. PAMD shall provide
a communications mechanism between plug-ins that allows one plug-in to extend its
functionality through the use of another.

The hardware and software used must be compatible. There should be a reference
implementation of PAMD that runs on devices that are powered by Palm OS V3.1 and
higher. In particular, devices manufactured by Handspring, Sony Clie and Palm need to
be supported.

It should be at least on a par with other applications in terms of performance. PDA users
are used to fast response times from applications, which imposes a need for PAMD to be
lean and efficient. Possible memory limitations of 2MB make this goal more difficult to
achieve.

It must be programmer and user friendly. Otherwise the stakeholders may not adopt it,
regardless of how good it is.

3.3 PAMD Architecture

3.3.1 PAMD Architecture Qualities
The following architectural qualities were deemed essential to satisfy the requirements
outlined above. Each attribute is explained and accompanied by one or more metrics that
were used to measure how well the quality was achieved in the final system. The following
table is ordered by the importance of each quality, starting with the highest.

Depending on the context, a PAMD-aware application could be either an application that is
communicating via PAMD to execute a plug-in, or a plug-in that is communicating via PAMD to
execute another plug-in.

CMU/SEI-2002-TN-020

Quality
Attribute

Programmer-
friendly

Performance

Usability

Availability

Portability

Description

The application programming interface (API)
provided by PAMD should be easy to learn and use
for both plug-in and application developers.
Otherwise, a steep learning curve may discourage
software developers from using PAMD.

PAMD has to provide its services to Palm users in a
reasonable amount of time. If a PDA is sluggish
when using PAMD, the users will stop using it.

PAMD has to provide user-friendly interfaces for end
users so that they can use PAMD plug-ins with their
applications. It also needs to provide various
features in the PAMD plug-in manager for
maintaining PAMD plug-ins.

PAMD will be available for service every time a PDA
is turned on, because it is the only way in which
applications can communicate with plug-ins.

PAMD, PAMD-aware applications, and PAMD plug-
ins must work on Palm OS V3.1 and higher.

More than one company offers products that utilize
extended versions of the Palm OS. PAMD shall work
on any of these, but PAMD shall not work on
competing PDA operating systems like Windows
CE.

Metric

Days required to adapt an
application to be PAMD
aware

Days required to create a
plug-in

Seconds to retrieve a list
of compatible plug-ins

Seconds to execute a
plug-in

User success rate in
using PAMD

Time required to complete
a task

Error rate

Users' subjective
satisfaction

MTF5/(MTF/MTR6)

Number of Palm OS
versions supported

Number of Palm OS PDA
brands supported

Table 1: Architectural Qualities

3.3.2 PAMD Components

The PAMD architecture is composed of three entities: a PAMD plug-in manager, a PAMD-

aware application, and a PAMD plug-in.

Plug-In Manager

The principal role of the plug-in manager is to coordinate communication between plug-ins
and applications. When an application wants to execute a plug-in, it requests the plug-in

4 Percentage of tasks that users complete correctly
5 Mean time to failure
6 Mean time to repair

CMU/SEI-2002-TN-020

manager to execute the plug-in on its behalf. At this point, the plug-in manager calls the
specified plug-in and passes control to it. Once the plug-in executes, the plug-in manager
regains control and then returns the result and control back to the calling application.

In addition to coordinating communication, the plug-in manager is responsible for
maintaining the plug-in registry, where information about each installed plug-in, such as the
data it can handle, is stored. The PAMD system uses that information to determine the state
of availability of every registered plug-in. The type of information that can be processed by a
given plug-in serves as selection criteria for matching plug-ins and applications.

PAMD Plug-In
The role of a PAMD plug-in is to provide a service to applications or other plug-ins. A plug-

in doesn't store any information about which applications will use it and doesn't need to be
aware of PAMD as long as it conforms to the PAMD specification. This achieves the desired

separation between applications and plug-ins.

PAMD-Aware Application
PAMD-aware applications are aware of the availability of the plug-in manager; request and
receive services from PAMD plug-ins; and can get services through the provided PAMD APIs
and abstract data types (ADTs). PAMD-aware applications know about plug-ins vis-ä-vis
PAMD, and PAMD-aware application developers must not assume that a given plug-in is
present. Therefore, the use of PAMD APIs and ADTs and the indirect access of plug-ins via
the plug-in manager help satisfy the requirement for nonproprietary plug-ins.

3.3.3 PAMD System Architecture
PAMD-aware applications and PAMD plug-ins interact via the plug-in manager. When the
application sends a request for services to the plug-in manager, the plug-in manager delegates
the request to a plug-in. The assumption behind this process is that applications and plug-ins
should know what kind of data types they exchange. Note that data exchange is done through
direct access to the shared memory. To maintain up-to-date PAMD plug-in information, the
plug-in manager queries the system database. Faster use of this information is accomplished

through a private database called a plug-in registry.

For the sake of simplicity, the following architectural diagrams show only one PAMD-aware
application and one plug-in acting as a service provider. Figure 1 describes the basic
components and connectors in PAMD. Note that a plug-in can act both as a consumer and

provider of services.

CMU/SEI-2002-TN-020

PAMD-aware
application

—m—
PAMD
Plug-in

4-
Plug-in manager y

Plug-in registry

System
Database

Legend

.'■„.■

lug-in manager Plug-in

Application Memory

Q
Database Port

 ► ►
Application DB connection

Launch
 ► ►

Method Direct memory
invocation access

Figure 1: General Architectural View

Figure 2 shows how the components interact with each other when an application tries to
execute a plug-in. The steps shown are described below.

(§) Application copies its data
into shared memory

(2) List of compatible plug-ins is requested ^

(4) Execution of plug-in is requested M

6) Needed data is accessed

PAMI>aware
application —m—

(l) Plug-in is registered

(§) Plug-in is executed

*Plug-in manager

(7) Result and control are
returned to calling application

Plug-in
L_j^gisti2J

Figure 2: Component Interaction Diagram

1. The plug-in is registered.
The plug-in manager searches the system database to detect a newly installed plug-in. If
one is found, the plug-in manager registers it by asking it for its name and description,
and the data types it supports.

CMU/SEI-2002-TN-020

2. A list of compatible plug-ins is requested.
A PAMD-aware application requests a list of compatible plug-ins that can process the
input and output data types handled by the application. Upon receiving this request, the
plug-in manager searches the plug-in registry and returns the list of compatible plug-ins
to the application.

3. The application copies its data into shared memory.
This allows the plug-in to access required input data.

4. The execution of the plug-in is requested.
A PAMD-aware application requests the plug-in manager that a specified plug-in be
executed.

5. The plug-in is executed.
The plug-in manager calls the plug-in to perform its service and yields the control thread

to it.

6. Needed data is accessed.
If a plug-in needs to access the input data during execution, it accesses it from shared
memory. At the end of its execution, the plug-in can save its output data in shared
memory.

7. After the plug-in finishes execution, control and the result are returned to the plug-in
manager. The plug-in manger then returns the result and control to the calling
application.

3.3.4 Tradeoffs
In developing the PAMD system architecture, the following three key architectural tradeoffs

were made:

1. performance vs. availability

2. performance vs. security

3. architectural complexity vs. flexible inter-application communication

Each tradeoff is described below.

Performance Vs. Availability
This tradeoff involves two approaches that provide communication between an application
and a plug-in. The first approach requires that an application and a plug-in communicate with
each other via the plug-in manager. The plug-in manager invokes and runs a plug-in upon an
application's request. The application cannot call a plug-in directly to extend its functionality.
Because the PAMD architecture uses an indirect invocation method to call plug-ins, the
performance associated with plug-in execution will degrade. However, since the plug-in
manager coordinates the communication, it can provide a more secure runtime environment

(e.g., an application will not be able to call plug-ins that are not in service).

In the second approach, an application can access a plug-in directly. In this architecture, the
role of plug-in manager is restricted to maintaining a plug-in registry and passing compatible

10 CMU/SEI-2002-TN-020

plug-in information to an application. Therefore, the PAMD manager doesn't participate in
the execution of a plug-in. Due to the direct invocation of plug-ins from an application, the
performance regarding plug-in execution will be better than in the first approach, since there
is no need to route plug-in invocations through the plug-in manager. However, in contrast
with the previous approach, the appropriate execution of a plug-in cannot be guaranteed,
because each application is responsible for handling illegal executions.

Considering the fact that the Palm OS isn't robust enough to handle the kind of fault outlined
above gracefully (often leading to system crashes), the first approach can increase the
availability of PAMD by ensuring that nonexistent plug-ins will not be executed.7 These
checks can be handled transparently as a service to all applications that request the execution
of a plug-in. This also increases usability from the perspective of application developers
because they will not need to care about the exception handling of these situations. Hence,

the first approach was selected for PAMD.

Performance Vs. Security
This tradeoff involves caching plug-in information about installed plug-ins using two
approaches. Which approach is used depends on whether a persistent database or volatile

memory space is used.

The first approach is to use a database into which data collected from plug-ins is persisted.
The use of this database reduces the workload of building the PAMD registry when the plug-
in manager is opened. However, it exposes security problems, since the database can be
deleted or edited easily without PAMD's knowledge, using Palm utilities. This data
corruption may lead to a system crash, thus lowering system availability.

The second approach uses an internal data structure to save plug-in information, which
prevents users from tampering with the registry information. In this case, the information
needs to be rebuilt, requiring more processing time, especially when many plug-ins exist in
the system. Since the number of plug-ins is the most critical factor in how quickly the list of
plug-ins can be built, the system may not meet performance requirements when the number

of plug-ins increases.

Assuming that an average user is unlikely to delete or corrupt the database, the first approach
is chosen. When a database is deleted or corrupted, the plug-in manager can rebuild the
registry, a process that is expensive, but unlikely to recur. And the performance gained by this
approach outperforms the reduction in security and availability.

Among other possible checks

CMU/SEI-2002-TN-020 11

Architectural Complexity Vs. Flexible Inter-Application Communication
This tradeoff involves applications acting as plug-ins. Two popular applications in the Palm
OS are the phone book and email applications. One limitation of the email application is that
its users need to type email addresses every time an email is composed—no contacts list
facility is provided. Consider the scenario of a user who wants to send an email to a person in
the phone book application. PAMD could allow the user to select the person from the phone
book application, and then it could pass the email address and control transparently from the

phone book to the email application.

Under the current architecture and without a plug-in, this scenario can't be achieved, since
the current plug-in manager assumes that services can be provided only by a plug-in. The

plug-in manager executes a plug-in as a part of its code under the same thread, not as a
separate application. Therefore, it's impossible to change the phone book application, which

acts as both an application and a plug-in within the existing PAMD.

To support this scenario, the definition of a PAMD plug-in needs to be extended to include
the passive invocation of a code resource and standalone applications that can provide
services. Although this extension provides more flexible application-level communications, it
also makes PAMD plug-ins more complicated, thereby increasing implementation complexity

and steepening the programmer's learning curve.

12 CMU/SEI-2002-TN-020

4 PAMD Implementation

This section concentrates on how the plug-in manager and the other components are
implemented. It ends with a discussion of the limitations of the current implementation.

4.1 Plug-In Manager Implementation

4.1.1 Communication Between the Plug-In Manager and an Application

As a means of communication between Palm applications and plug-in managers, a Palm OS
application launch mechanism is used. Typically, an application launches when it receives the
launch code SysAppLaunchCmdNormalLaunch from the PALM OS. However, developers
can also create user-defined launch codes that can be used as communications mechanisms
between applications. As long as both sending and receiving applications know the user-
defined launch codes and how they work, they can communicate using them.

In PAMD, two launch codes, PAMD_CMD_GET_COMPATIBLE_PLUGINS and
PAMD_CMD_RUN_PLUGIN, are defined for communications between the plug-in manager and
an application. An application sends those launch codes to the plug-in manager when it
requests services, and the plug-in manager responds to those launch codes appropriately.

Launch Code

PAMD_CMD_GET_COMPATIBLE_PLUGINS

PAMD CMD_RUN_PLUGIN

Description

Get a list of compatible plug-ins that support the
data types handled by an application. The input and
output data types need to be passed together.

Execute the plug-in of interest with parameter
blocks. The plug-in manager executes the plug-in
and returns the result and control to the calling
application.

Table 2: Plug-In Launch Codes

4.1.2 Communication Between a Plug-In Manager and a Plug-In

A plug-in is a simple Palm code resource that the plug-in manager executes as a normal
function call. However, since the code is external to the plug-in manager at compile time, the
plug-in manager needs to load the plug-in's code into memory for the execution and then call
the plug-in with the parameter block, holding the data passed from a calling application.

CMU/SEI-2002-TN-020 13

4.1.3 Recovery Mechanism from Malicious Corruption to the Plug-In Registry

As mentioned in Section 3.3.2, the current architecture uses a database to maintain a list of
plug-in information called the PAMD registry. However, the database is visible to users, who
can delete it. Doing so may lead to a system crash, thus lowering system availability.

Therefore, as a means to protect the registry from intended data corruption, the plug-in
manager checks the "modification number" in the database, which is incremented every time
a record in the database is added, modified, or deleted. Whenever the application updates the
plug-in registry, it keeps the last modification number in the application preference, where a
Palm application can save its state information. Then when it starts the update, the plug-in

manager compares the current modification number of the plug-in registry and the
modification number saved in the application preference. If those values are different, the
plug-in manager assumes that other applications or users have modified the plug-in registry
and starts the recovery process by retrieving information about the plug-ins in the system and

updating the plug-in registry with the collected information.

4.2 PAMD Plug-In Implementation
The plug-in manager loads and executes the plug-in as a function call using a parameter
block. Based on information stored in this parameter block, different sections of the plug-in's
code will be executed. These separate sections correspond to modes in which a plug-in can
execute. The mode is located in the parameter block and specifies how a plug-in should
respond to the call from PAMD. Table 3 describes the modes currently used. PluginHelp and
PluginConfig are optional modes in the sense that, although the functions they call for need
to be present, their implementation could be empty. The plug-in may not respond to these
modes but has to be able to handle them gracefully. The other three modes must be handled

by the plug-in.

14 CMU/SEI-2002-TN-020

Mode Description Implementation

PluginRun When in this mode, the plug-in provides its service. For
example, the WordCounter plug-in should count the number of
words in its input and store the result in the output.

Mandatory

Pluginlnfo This part is executed when PAMD detects a newly installed
plug-in and needs to gather information about it. The code to
handle this mode returns basic information such as the
input/output data type it will process later. No forms are to be
displayed inside this block.

Mandatory

PluginCleanup This mode is used to give a plug-in the opportunity to clean up
after itself before being removed from the system.

Mandatory

PluginHelp This mode is used to signal a plug-in about which an end user
is asking for more information. Therefore, a plug-in displays
copyright, help, and "about" information.

Optional

PluginConfig In this mode, a plug-in shows its configuration form, if it has
one.

Optional

Table 3: Plug-In Run Modes

4.3 PAMD Application Implementation
There are no restrictions on how an application should be implemented. An application only
needs to use the PAMD API and ADTs to communicate with PAMD. See Section 5 for more
information about these topics.

4.4 Design Limitations
In the current design, there are some limitations resulting from the data semantics used. Note
that to address them, considerable overhead would have to be added to the system. As a
consequence, the system's usability and performance would have been reduced.

4.4.1 Single Input and Output Parameters

The use of single input and output parameters limits the granularity of the data. Even though
a complex data type can always be used to encapsulate what would require many arguments,
input and output information are limited to a single field. Handling data that contains
multiple parameters may not be achieved easily. Further, heavy pointer de-referencing will be
used, requiring more data manipulations that are error prone. Also, flexibility may be limited
when more than one type of data needs to be processed by a plug-in.

CMU/SEI-2002-TN-020 15

4.4.2 Validity of a Plug-In
It is assumed that the plug-in's data type and service description describe it accurately. Even
though there is a mechanism in place to check whether the plug-in has been tampered with
since it was last accessed, that mechanism is limited to the operating environment. Currently,
there are no checks on the validity of the plug-in to be installed. This could raise an issue if
secure operations are desired, because a plug-in can be tampered with to implement other
services, hence breaching security; or the data type can be tampered with to achieve similar

goals, causing the system to crash.

4.4.3 Circular References
Circular references can be interpreted in two different ways in the context of PAMD. The first

scenario refers to the use of one plug-in by another plug-in through PAMD. This scenario can
be extended to more than two plug-ins. The second scenario refers to a plug-in calling itself
recursively, which is similar to a recursive function call. In such a call, there is always the
possibility that the recursion level will exceed the OS stack limit. In the case of the Palm OS,
this situation will bring the system down. Such circular references would cause the system to
be depleted of memory very fast and may also cause some data to be overwritten, crashing
the system as a result. A possible solution would be to implement some checking mechanism
within PAMD. However, doing so would add considerable overhead to running a plug-in.
Therefore, handling this situation is now left up to the plug-in programmer.

4.4.4 Platform Limitations
The current architecture is suitable only for the Palm OS environment, even though it may
not work on Palm OS V3 or lower due to the limitation of Palm APIs, or on Palm OS V5,
since this version of the Palm OS is multithreaded. Further, PAMD is not designed to work
on the Windows CE environment, as that was not a requirement. The dependency on the
Palm OS API to remain portable across various Palm OS versions makes it impractical to
address portability to an entirely different platform. Though it can be argued that the
architecture is portable as long as similar functions can be provided through a layer of
abstraction, much work is required on the API or kernel that limits PAMD's portability.

4.4.5 Single Service
To provide multiple services within a single plug-in, several factors must be considered:

• "Single input and output" limits the type of service that can be provided to a specific data
type.

• Multiple services working on the same data types need to be differentiated.

• It is unclear how multiple services can be represented and managed, since plug-ins are
currently designed as single-code resource databases that can be deleted or added at will.

16 CMU/SEI-2002-TN-020

5 A Programmer's Perspective of PAMD

This section concentrates on those aspects of PAMD that are going to be more interesting to
software developers. This is just a fraction of the developer documentation that is available in

the form of a programmer's manual.8

The main elements that compose a programmer's experience while working with PAMD are

• abstract data types, used to hide implementation details and provide a safer environment
for software developers

• an API, provided for applications to interact with PAMD

• a plug-in framework, designed to simplify the creation of plug-ins

5.1 PAMD Data Types
PAMD data types act in a way similar to MIME types in a browser. Although the same
concept is used, the types usually associated with browsers are not prescribed. This brings up
a very important point: how an application or plug-in determines which data type to support,
which data types exist, and what those types are like is outside the scope of PAMD.

From an implementation point of view, PAMD data types contain four bytes and can be any

combination of printable characters except spaces.

Data types are used to determine compatibility between the data that an application needs to
share and is expecting in return, and what a plug-in will take and produce. The following

rules are followed to this end:

• The input and output data types specified by a plug-in need to match those specified by
the plug-in caller.

• A plug-in that receives BLOB data types will match any input data type provided by the
plug-in caller.9

• A plug-in caller that expects a return type of BLOB will match any output data type
provided by a plug-in. 10

9
Eguiluz, H.; Govi, V.; Kim, Y. J.; & Sia, A. Z Specification for PAMD. To be published on the Web.
Except for the data type VOID, which means that the application is not going to provide any input
data

10 VOID is an exception here too.

CMU/SEI-2002-TN-020 17

5.2 Abstract Data Types
The IEEE defines an abstract data type as

"a data type for which only the properties of the data and the operations to be
performed on the data are specified, without concern for how the data will be

represented or how the operations will be implemented"[IEEE 99]

PAMD relies heavily on ADTs. This was a conscious decision to encapsulate data structures

that are shared by applications, plug-ins, and PAMD. The interfaces to these ADTs should
ease programming and provide a more secure environment for applications and plug-in

developers.

Given the limitations imposed by the C programming language, it is impossible to prevent a
programmer from directly accessing the information held in the ADTs. Yet we have strongly
discouraged direct access in the programmer's manual on the basis that the ADTs keep track
of internal information used to diagnose problems. The ADTs also provide consistency
checks and a very detailed set of error messages that can give software developers valuable
feedback when errors occur. The team believed that this last point was particularly important
because of the added complexity involved in developing embedded applications.

ADTs have encapsulated three main data types:

1. PAMDPluginParamBlock, which encapsulates parameters passed between applications
and plug-ins. These parameters primarily carry input and output data to and from plug-

ins.

2. PAMDPluginlnfo, which encapsulates the information that a plug-in gives to PAMD at
registration time. This is a simple form of introspection.

3. PAMDPAMDPluginList, which represents a list of compatible plug-ins passed to an
application by PAMD

Without these ADTs, the implementation effort would have been smaller. The team believed
that the ADTs would make the implementation developer friendly and were therefore worth

the added effort.

5.3 Writing a PAMD Plug-In
A plug-in is a code resource with a single point of entry through which PAMD passes control

to it. A plug-in framework, provided as part of the PAMD developer's kit, takes care of
routing the information received from PAMD to the appropriate user-defined functions. Each
function maps to one of the modes described in Table 3 above. Therefore, a plug-in developer

needs to provide appropriate implementation for these functions.

CMU/SEI-2002-TN-020
1 o

So, writing a plug-in becomes a matter of writing those five functions that are required by the

framework.

Every plug-in follows a very simple set of steps when executed:

1. It extracts the input information provided by its caller (if such information is required).

2. It does any required processing.

3. It sets its result as the output information to be passed back to its caller (if required).

When a plug-in is asked to describe itself, it needs to pass the following information back to

PAMD:

• its input data type, which corresponds to the type of data it is expecting from a caller

• its output data type, which corresponds to the type of data it will provide to its caller,
most likely, based on the input that is passed to it

• its name, which corresponds to what will be displayed to the user on the screen. The
name has to be short, yet descriptive enough to convey which service the plug-in
provides.

• its description, which is displayed only on PAMD's control panel

Whether a plug-in is being created from scratch or as an adaptation to existing code, a few

things need to be kept in mind:

• No global variables can be accessed from within a code resource.

• If string constants must be used, the compiler has to be instructed to make them PC-
relative. Otherwise, at least with the CodeWarrior environment, they are made global.

• If the plug-in is potentially going to be called by another plug-in or by itself, it should be
made reentrant, and no state should be kept from invocation to invocation (like a
database).

• Plug-ins can have their own graphical user interfaces (GUIs) as normal applications.

• Plug-ins are not applications, so they cannot receive launch codes from the Palm OS.

• Plug-ins can send launch codes to applications.

• A plug-in that returns information to its caller must set the output parameter of the
parameters structure that is passed to it. This must be done even when the plug-in's result
is stored in the input data.

• If the plug-in being developed is algorithmic intensive and doesn't rely much on the
Palm OS, developing and testing it in a PC-based development environment may shorten
its development time.

For sample code that illustrates a complete plug-in implementation, see Appendices A, B, and

C.

CMU/SE1-2002-TN-020 19

5.4 Writing a PAMD-Aware Application
In general, an application that is going to use PAMD to extend its functionality needs to

follow these steps:

1. Determine which plug-ins are compatible with the data types that are passed and
returned by the plug-in user.

2. Select a compatible plug-in to run.

3. Run the plug-in.

4. Get the plug-in's result.

Steps 1 and 3 make use of the PAMD API mentioned earlier. Each step is explained below.

For sample code that illustrates these steps, see Appendices A, B, and C.

Step 1: Determine which plug-ins are compatible.
To generate a list of compatible plug-ins, the PAMDGetCompatiblePlugins () function
needs to be called. This API function takes as an argument a plug-in list with specified input
and output data types. PAMD uses these data types to determine plug-in compatibility.

Step 2: Select a compatible plug-in to run.
Once the list has been generated, the plug-in caller needs to select a plug-in for execution.
The caller determines how the plug-in is selected—either by a user (through a GUI) or by the
plug-in caller. In either case, the list of plug-ins that was returned by PAMD needs to be
searched using the ADT that encapsulates plug-in lists.

Step 3: Run the plug-in.
To run a plug-in, PAMD requires the following information from the plug-in caller:

• the plug-in identification, which is found in the plug-in list generated in Step 1 and used
by PAMD

• the data that the plug-in requires (if any). For plug-ins that expect data from their callers,
this should be specified as the input argument to the plug-in.

• the input and output data types that the application believes the plug-in expects and will
return. These data types are used by PAMD to double-check the plug-in invocation.

Once this information is collected in the form of a parameters structure, the plug-in caller can
pass it to PAMD. Then PAMD, after making the necessary verifications, will execute the

plug-in on behalf of the caller.

20 CMU/SEI-2002-TN-020

Step 4: Get the plug-in's result.

Once PAMD finishes executing a plug-in, it returns control to the caller. At this point, it is the
caller's responsibility to extract the information, if any, that was returned by the plug-in. Any
data that the plug-in returns to the application becomes the application's responsibility to

return to the system.

CMU/SEI-2002-TN-020 21

6 Use of Software Engineering Tools

This section discusses the use of various software engineering tools in the development of
this project. The following sections describe each tool and the team's experience using it.

6.1 Architecture Tradeoffs Analysis Method
The Architecture Tradeoff Analysis MethodSM (ATAMSM) is used to understand the tradeoffs

inherent to the architecture of a software system by evaluating various conflicting quality
attributes such as performance and modifiability [Kazman 98]. 'The purpose of the ATAM is
to assess the consequences of architectural decisions in light of quality attribute requirements
and business goals. The ATAM process is a short, facilitated interaction between multiple
stakeholders, leading to the identification of risks, sensitivities, and tradeoffs. The purpose of
an ATAM evaluation is not to provide precise analyses; rather, it is to discover risks created
by architectural decisions [Clements 01]. The ATAM helps to provide an in-depth
understanding of the software system's design, while highlighting tradeoffs and potential
risks that may violate desired qualities of the system. The analysis can also improve an
already developed architecture and help align the participating stakeholders' understanding of

it.

Specifically for this project, ATAM techniques were used to identify important qualities of
the system and prioritize them using a utility tree. Various qualities and their sensitivity
points were determined, leading to the identification of conflicting qualities that required
design tradeoffs and analysis. Although the ATAM was not conceived for deriving an
architecture, this did not prevent the team from using its analysis techniques to derive an
improved architecture from an initial attempt. In fact, it was possible to derive an initial
architectural pattern using the prioritized qualities derived from the ATAM's utility tree and
known architectural styles [Shaw 96]. It is our experience that deriving the utility tree from
an initial architecture, while keeping in mind business goals and functional and nonfunctional
requirements, focuses the architecture team on producing an architecture that truly responds
to stakeholders' needs. Lastly, it served as an information source for spreading architectural
knowledge across the development team and for creating more comprehensive

documentation.

For this project, the ATAM was used to probe the architectural design using various questions
and scenarios. This allowed the project's various stakeholders to fully understand the extent

SM Architecture Tradeoff Analysis Method and ATAM are service marks of Carnegie Mellon
University.

22 CMU/SEI-2002-TN-020

and limit of the design. This is interesting due to the exploratory nature of the project. On
first impression, the ATAM seems like a tool useful only for large software systems where the
number of stakeholders is very large. However, our experience with small projects indicates

that the ATAM is suitable for them too.

6.2 Software Risk Evaluation
According to the Department of Defense (DoD), software risk management is a proactive
approach for minimizing the uncertainty and potential loss associated with a project. Its aim
is to provide insights that support decision making through a continuous assessment of risks
and opportunities, focusing on the day-to-day operational risks that a project may face.

The Software Risk Evaluation (SRE) is a method that enables the identification, analysis,
tracking, mitigation, and communication of risks in a software-intensive project over its
entire life cycle. The SRE is used to identify and categorize specific risks that result from a
development project's management, resources, and constraints. The SRE is particularly
useful in the early phases of a project for assessing risks from all stakeholders' (including
developers and clients) perspectives. In doing so, misunderstandings related to requirements
can be rectified early in the development process before they propagate and become costly
mistakes. In addition, it helps improve the communication between clients and developers,
since it highlights each one's concerns. Through constant monitoring, potential risks can be
identified and mitigated, which helps in the management and control of a software project

[SEI].

A condensed version of the SRE (mini-SRE) was conducted approximately one-third of the
way into this project. Several different stakeholders assisted in this mini-SRE; of particular
importance was the fact that the project's clients were present. From the risks that were
identified during the mini-SRE, the following two are the most important:

• The team didn't clearly understand what the requirements for the project were. This
prompted a reaction from the clients that led to the most serious risk at the time,

• The team had unknowingly complicated the requirements, which had almost stalled the
development process.

These were major risks that could have caused the project to fail if they were not identified
early in the development cycle. Once these and other risks were identified, the team settled
on mitigation strategies for them. In particular, for the two risks mentioned above, the team
reacted very quickly (within a week) by creating prototypes that confirmed the direction for
the project and reestablished the clients' confidence in the team's ability to deliver a system

that satisfied their vision.

We believe that the SRE techniques and the collaboration of our clients were invaluable in

taking the team out of analysis paralysis.

CMU/SEI-2002-TN-020 23

6.3 Software Process
A software process defines the different stages that a software product goes through during its
lifetime and provides the necessary guidelines, including management functions and roles,
for carrying out each stage. The success of adopting any specific software-development life-
cycle model depends on the type and scale of the software project, the organization's business

goals and structure, and the people involved in the software project.

As the project was inherently exploratory and team members could work only part-time, the
Team Software ProcessSM (TSP5"1) [Humphrey 00] was tailored and evolved to meet the
project's objectives. The TSP-prescribed techniques that were useful included the following:

• Divide the project into several cycles.

• Plan each cycle and track its progress using earned value.

• Assign team members specialized management roles to coordinate different areas of the
development process while team members also handle engineering roles. This was
especially beneficial during the early stages of the project because it helped organized the
team.

Our tailoring of the TSP included the following:

• Add new roles to the development team, such as client liaison. Other roles, such as
quality assurance and development managers, were not initially employed and were only
added later when required.

• Remove TSP templates and scripts that would add significant overhead to the team
members, as well as those that require a steep learning curve.

• Remove a conventional design phase from the project, given that the end product is
relatively small. Instead, the team concentrated on specifying the interfaces between
PAMD, applications, and plug-ins. Different team members developed these pieces
individually while complying with agreed-upon interfaces. Although integration was not
perfect, only six defects were found during this phase.

The team initially used questionnaires and use cases to elicit requirements, but found that
they were insufficient to fully understand the project's requirements. As a consequence, end-
to-end scenarios and a risk-reduction prototyping were used to complement the original
techniques. By developing toy prototypes that focused on achieving a single goal, critical
requirements were identified and understood [Wallnau 01]. As this was an exploratory
project, it was sometimes difficult to find the right goals for the prototypes because the team
was discovering requirements. Knowledge of just the technology or just the requirements
doesn't help to resolve this kind of situation—knowledge of both is necessary. A better
understanding of requirements improves our knowledge of the technology—what is and what
is not possible—and this, in turn, helps to determine new, unnecessary, or refined
requirements. Eventually, what is learned from these iterations becomes marginal, and the

project's requirements become clear and stable.

SM Team Software Process and TSP are service marks of Carnegie Mellon University.

24 CMU/SEI-2002-TN-020

Given the time constraints experienced by the team, the development of prototypes was
divided among various team members. Informal code reviews were used to share the
information that each individual gained while developing prototypes, including knowledge
about Palm OS technologies. Once requirements were clear, the team evolved to a more
conventional process and implemented PAMD from scratch.

It is well known that a software process is a set of guidelines that needs to be tailored for
each project. However, the team learned that tailoring is not limited to the beginning of a
project, but rather can and sometimes needs to be (as in our case) done throughout the life of
the project.

CMU/SEI-2002-TN-020 25

7 Future Directions

To make PAMD more universal and provide a larger benefit to its users, we think that the

following avenues should be explored:

1 Plug-ins could be enhanced to provide multiple services instead of only one, as the
current implementation allows. This could allow plug-in developers to aggregate closely
related functionality in one plug-in.

2. PAMD could support communication between multiple applications rather than just
between applications and plug-ins and between multiple plug-ins. This would allow the
creation of meta-applications.

3. PAMD could support data-type compatibility beyond MIME matching by storing a plug-
in-supplied list of data types with which a given service is compatible. So, if a service
that converts strings to uppercase can receive both normal ASCII and UNICODE
strings, this could be advertised by the plug-in and recorded by PAMD.

4. PAMD could support remote procedure calls if the Palm-OS-compatible device has a
network connection of some sort.

5. PAMD could be extended to support the verification/authorization of plug-in use. This
could help the creation of a plug-in "marketplace" where developers can license their
plug-ins to PAMD users.

6. PAMD could support the association of an icon with a plug-in.

7. PAMD could allow users to attach a symbolic name to each service and then search the
list of plug-ins using that name.

8. PAMD could be ported to Windows CE devices via an abstraction layer that provides
mechanisms similar to those used by PAMD.

All of these proposed extensions are feasible.

CMU/SEI-2002-TN-020
2o

8 Conclusions and Lessons Learned

The outcome of this project was a reference implementation of PAMD that runs on multiple
versions of the Palm OS and on hardware provided by different vendors. It proved the
feasibility of the idea of an open and generic application-level plug-in architecture for Palm
OS-based devices.

This project demonstrated that its objective could be achieved using software engineering
techniques, therefore disputing the general idea that an exploratory software project cannot
be served by software engineering practices. The question should not be //"software
engineering techniques should be used for a project of this nature, but rather which ones.

It appears that nonfunctional requirements are as important as functional requirements, or
perhaps even more so, due to the increasing requirements for security, performance, and
portability. As with any software project, tradeoffs were made. However, contrary to usual
practices, these tradeoffs were evaluated and made using software engineering techniques.

From a technical point of view, the team learned that, at the very least, the following topics
need to be addressed when building a plug-in architecture:

• how to determine data type compatibility

• whether the roles of applications and plug-ins can or should be interchangeable

• how to describe a service provided by a plug-in

• how many services shall be provided by a single plug-in

• the security implications of the architecture

• mechanisms for selecting one plug-in from a set

• mechanisms for passing data between applications and plug-ins

• the amount of information that the system is going to store about each application and
plug-in

• The cost of having an application use a plug-in should approach that of a function call.
Although this is never really achievable, the architecture and design have to strive to get
as close as possible to this ideal.

• The architecture needs to be both transparent and visible, depending on its users'
situations and desires.

• The architecture needs to survive both malicious usage and usage lapses.

CMU/SEI-2002-TN-020 27

From a process point of view, the team learned that

• Simple, very focused throwaway prototypes can serve many purposes—they can teach a
new technology, increase the engineer's confidence, and, when shared with the client,
increase the client's confidence in the team.

• It doesn't always make sense to follow a very strict software process until requirements
are well understood. A team should concentrate on identifying those requirements rather
than on a software process.

• Software techniques that are believed to work only on large projects can help a small

project too.

• The team confirmed that the testing process is greatly improved when engineers who
don't have an investment in the code participate.

• Addressing nonfunctional requirements that are abstract and nontrivial is hard. Software
architecture can be used to provide a template for reasoning about them. Such reasoning
allows the design to be scaled in terms of complexity and size.

• ATAM was effective when reasoning about nonfunctional requirements and highlighted
necessary tradeoffs, as well as risks. It also works as a way to spread architectural
knowledge between team members.

• Formal methods, such as Z, can be used to reason about the requirements and testing of a
design Although such methods are usually of particular importance in the design of
safety-critical systems, they can also be useful in less critical systems where accuracy is
important.''

In conclusion, the use of software engineering techniques has made this project closer to an
engineering practice than to an art. We say this because there is a well-defined methodology
approach that can be followed and improved. Exploratory processes are an art in the sense
that they can't be codified. Software engineering tools, such as toy prototypes, ATAM, the

SRE, and formal methods, serve to bound such an exploratory project.

11 Eguiluz, H.; Govi, V.; Kim, Y. J.; & Sia, A. Z Specification for PAMD. To be published on the Web.

~ " " ~ CMU/SEI-2002-TN-020
28

Appendix A Plug-in Framework Code Structure

This appendix provides actual code that implements the plug-in framework. Although it is
very simple, it is powerful in the sense that it frees plug-in developers from a good part of the
complexity of implementation. Another advantage is that it makes plug-ins easier to

understand.

PAMDErr PlugInMain(PAMDPluginParamBlockPtr parama

PAMDpluginlnfoPtr pluginlnfo)

{
PAMDErr pluginResult;

switch (params->mode)

{
case pluginRun:

pluginResult = PluginRun(params);

case pluginAbout:

pluginResult = PluginAbout(void);

break;

case pluginConfig:

pluginResult = PluginConfig(void);

break;

case pluginlnfo:

pluginResult = Pluginlnfo(pluginlnfo);

break;

case pluginCleanup:

pluginResult = PluginCleanup(void);

break;

}
return pluginResult;

}

CMU/SEI-2002-TN-020 29

Appendix B Sample Plug-in Body

The following code shows the case of a plug-in transforming a string into uppercase. Error
handling has been omitted for the sake of clarity.

PAMDErr PluginRun(PAMDPluginParamBlockPtr params)

{
Uint32 theResult = 0;

MemHandle mhToText;

Uint32 size;
Char* textToConvert;

PAMDErr e;

int I ;

//Output data.

MemHandle mhOutput;

Char* txtOutput;

// Get hold of input data.
e = PAMDGetInputArg(params, &mhToText, &size);

textToConvert = MemHandleLock(mhToText);

// Get and prepare output buffer.

mhOutput = MemHandleNewfsize * sizeof(Char));

txtOutput = MemHandleLock(mhOutput);

MemSet(txtOutput, size, 0);

// Conver the string.

for (i = 0; i < size; i++)

{
// Don't change anything that is not a letter.

if ((textToConvert[i] < 97) || (textToConvert[i] > 122))

txtOutput[i] = textToConvert[i];

else

30 CMU/SEI-2002-TN-020

}

txtOutput[i] = textToConvert[i]-- 32;

}

MemHandleUnlock(mhToText);

MemHandleUnlock(mhOutput);

e = PAMDSetOutputArgtparams, mhOutput);

if (e != PAMD_SUCCESS)

return e;

return PAMD_SUCCESS;

CMU/SEI-2002-TN-020 31

Appendix C Sample Application Code

This appendix introduces sample source code that follows the four steps described in Section

5.4.

«include "PAMDAPI.h"

«include "PAMDParamBlockADT.h"

«include "PAMDPluginlnfoADT.h"

«include "PAMDPluginListADT.h"

// Variable definitions

PAMDErr e ;

PAMDPluginlnfoPtr pinfo;

PAMDPluginListPtr plist;

PAMDPluginParamBlockPtr params;

MemHandle inputData;

MemHandle outputData;

ulnt32 outputDataLength;

// STEP 1: Getting the list of compatible plug-ins

// Create a plug-in list and then populate it with the

// desired input and output types,

e = PAMDCreatePluginList(&plist);

e = PAMDSetlnputDataType(plist,""TX"");

e = PAMDSetOutputDataType(plist,»»TX"");

// Now get the list of plug-ins that are compatible.

e = PAMDGetCompatiblePlugins(plist);

// STEP 2: Selecting a plug-in to run

//...

II Somehow one plug-in gets selected.

II STEP 3: Running the plug-in

// Create the parameters block needed to call the plug-in.

e = PAMDCreateParams(¶ms);

32 CMU/SEI-2002-TN-020

// Set the minimum required data to call the plug-in.

e = PAMDSetCreatorId(params, pinfo->creatorID);

e = PAMDSetlnputDataType(params, pinfo->inputDataType);

e = PAMDSetOutputDataType(params, pinfo->outputDataType);

e = PAMDSetlnputArg(params, inputData);

// Now run the plug-in.

e = PAMDRunPlugin(params);

// STEP 4: Getting the plug-in's result

// Once the plug-in returns, get its output.

e = PAMDGetOutputArg(params, &outputData,

&outputDataLength);

// ...

// Use the data

// ...

// STEP 5: Free any used resources

// Once the parameters and the list of plug-ins are no

// longer needed, free them.

e = PAMDDestroyPluginList(&plist);

e = PAMDDestroyParams(¶ms);

CMU/SEI-2002-TN-020 33

Appendix D Acronyms and Terms

ADT Abstract Data Type

API Application Programming Interface

ATAM Architecture Tradeoff Analysis Method

DoD Department of Defense

GUI Graphical User Interface

MIME Multipurpose Internet Mail Extensions

MSE Master of Software Engineering

MTF Mean Time to Failure

MTR Mean Time to Repair

OS Operating System

PAMD Plug-in Architecture for Mobile Devices

PDA Portable Digital Assistant

SEI Software Engineering Institute

SRE Software Risk Evaluation

34 CMU/SEI-2002-TN-020

References

[Clements 01]

[DaggerWare]

[Humphrey 00]

[IEEE 99]

[Kazman 98]

[Palm 00]

[Potter 96]

[SEI]

[Shaw 96]

[SourceForge.net]

Clements, P.; Kazman, R.; & Klein, M. Evaluating Software
Architectures: Methods and Case Studies. Boston, MA:

Addison Wesley, 2001.

<http://www.daggerware.com/hackmstr.htm>

Humphrey, Watts S. Introduction to the Team Software
Process. Reading MA: Addison Wesley, 2000.

Institute of Electrical and Electronics Engineers. IEEE

Standards Software Engineering, Volume 1: Customer and
Terminology Standards. New York, NY: Institute of Electrical
and Electronics Engineers, 1999.

Kazman, R.; Klein, M.; Barbacci, M.; Lipson, H.; Longstaff,
T.; & Carriere, S. J. "The Architecture Tradeoff Analysis
Method," 68-78. Proceedings of the ICECCS. Monterey, CA,
August 10-14, 1998. Los Alamitos, CA: IEEE Computer
Society, 1998.

Palm, Inc. Palm OS Programmer's API Reference. Santa
Clara, CA: Palm, Inc., 2000.

Potter, B.; Sinclair, J.; & Till, D. An Introduction to Formal
Specification and Z. Second Edition. Harlow, Essex, England:
Prentice Hall Europe, 1996.

Software Engineering Institute. Software Risk Evaluation
Service, <http://www.sei.cmu.edu/products/services
/sw.risk.eval-service.htmlx

Shaw, M. & Garlan, D. Software Architectures Perspective's on

an Emerging Discipline. Upper Saddle River, NJ: Prentice

Hall, 1996.

<http://sourceforge.net/projects/diddlebug>

CMU/SEI-2002-TN-020 35

[Synergy Solutions Inc.] <http://www.synsolutions.com/software/magictext/>

[Wallnau 01] Wallnau, K.; Hissam, S.; & Seacord, R. Building Systems from
Commercial Components. Boston, MA: Addison Wesley,

2001.

36 CMU/SEI-2002-TN-020

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and
Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

(Leave Blank) August 2002

4. TTTLE AND SUBTITLE

PAMD: Developing a Plug-In Architecture for Palm OS-Powered Devices
Using Software Engineering

Final

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

Heman Eguiluz, Venkat Govi, You Jung Kim, Adrian Sia

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
HanscomAFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

PERFORMING ORGANIZATION

REPORT NUMBER

CMU/SEI-2002-TN-020

10. SPONSORING/MONITORING AGENCY

REPORT NUMBER

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This technical note describes a plug-in architecture for Palm Operating System devices developed by the authors,
a team of graduate students from Carnegie Mellon's Master of Software Engineering program. The note highlights
the architecture's three most important aspects: the product (a plug-in architecture) created from a software
architecture point of view; the implementation details that made this a unique project; and the software engineering
facets of the project. This note also shares lessons learned and suggests possible avenues that could be pursued
in the future to make plug-in architecture for mobile devices (PAMD) more universal.

14. SUBJECTTERMS

Palm OS, plug-in, software architecture, Architecture Tradeoff Analysis
Method, ATAM, Software Risk Evaluation, SRE

15. NUMBER OF PAGES

46

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified
NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

